(-1/4)(x+2)+5=-x

Simple and best practice solution for (-1/4)(x+2)+5=-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-1/4)(x+2)+5=-x equation:



(-1/4)(x+2)+5=-x
We move all terms to the left:
(-1/4)(x+2)+5-(-x)=0
Domain of the equation: 4)(x+2)!=0
x∈R
We add all the numbers together, and all the variables
(-1/4)(x+2)-(-1x)+5=0
We get rid of parentheses
(-1/4)(x+2)+1x+5=0
We multiply parentheses ..
(-1x^2-1/4*2)+1x+5=0
We multiply all the terms by the denominator
(-1x^2-1+1x*4*2)+5*4*2)=0
We add all the numbers together, and all the variables
(-1x^2-1+1x*4*2)=0
We get rid of parentheses
-1x^2+1x*4*2-1=0
Wy multiply elements
-1x^2+8x*2-1=0
Wy multiply elements
-1x^2+16x-1=0
a = -1; b = 16; c = -1;
Δ = b2-4ac
Δ = 162-4·(-1)·(-1)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-6\sqrt{7}}{2*-1}=\frac{-16-6\sqrt{7}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+6\sqrt{7}}{2*-1}=\frac{-16+6\sqrt{7}}{-2} $

See similar equations:

| 6x-3=3x-36 | | 4x+6+4x=6 | | 3x+5x+4+7=88 | | (64)=x/13 | | 14s/3=19 | | x3x+34x-40x=0 | | 4-5b+2b=-17 | | 1^2y+1^4=3^4 | | -8-3s=10 | | 5(x-4)-1=4 | | -4x+-17=-5 | | 6v+10=-8 | | 0.4m+1=2.14 | | -0.02a-0.2=-0.6 | | y=48/3 | | 0.5x+0.5=8 | | 17(x-2)=12(x+1)-16 | | 5(3z–7z+4)=2 | | 4(2x + 1) = 27 + 3(2x − 5 | | 40/100=25/x | | 2.50+0.15m=1+0.20m | | 9+6k=51 | | 5(x-9)-3x=4(x-4)-1 | | 24-v=31 | | 5(j-85)+28=93 | | -3(a-2)=5(a+2 | | P(x)=x^2+3x-2 | | -3(z-7)+5=-4 | | 2x-41=23+6x | | -1/3a=-3 | | -3(z−7)+5=-4 | | R~6=6+4r |

Equations solver categories