(-1/2)(4x+2)=-5

Simple and best practice solution for (-1/2)(4x+2)=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-1/2)(4x+2)=-5 equation:



(-1/2)(4x+2)=-5
We move all terms to the left:
(-1/2)(4x+2)-(-5)=0
Domain of the equation: 2)(4x+2)!=0
x∈R
We add all the numbers together, and all the variables
(-1/2)(4x+2)+5=0
We multiply parentheses ..
(-4x^2-1/2*2)+5=0
We multiply all the terms by the denominator
(-4x^2-1+5*2*2)=0
We get rid of parentheses
-4x^2-1+5*2*2=0
We add all the numbers together, and all the variables
-4x^2+19=0
a = -4; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-4)·19
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*-4}=\frac{0-4\sqrt{19}}{-8} =-\frac{4\sqrt{19}}{-8} =-\frac{\sqrt{19}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*-4}=\frac{0+4\sqrt{19}}{-8} =\frac{4\sqrt{19}}{-8} =\frac{\sqrt{19}}{-2} $

See similar equations:

| -26-2x=-5x | | m≥4;m=2 | | h+3.4=5.7 | | 12(x+3)-1=47 | | 509=-6+5(-12x+7) | | 2.5x-3.5=21.5 | | 28=2+4+4x | | -141=-6x+9(3x+3) | | -19+8(12x-15)=-43 | | -14+9(-2x+16)=-14 | | 6(2+3a)-6a=2(1+a) | | 268=-11x+11-12x-19 | | 16=1/7x-4 | | 24=-11+6x+2x-13 | | 180∘4000π=1∘y | | -5x-5+7x=3 | | 8(6i-10)=12 | | -7=8+2x-5x | | 8x+6x=280 | | 36=9x-12x | | 149.5=11.59(x+6) | | 51–3+5k=58* | | -4(3-2m)=12 | | 2x-4=16* | | 39=x+16.2 | | 8q-10=16 | | | | 6(y+5)-7=59 | | 5x=4080= | | 7y+40=3(y+4) | | (x=16)=(4x-5) | | 4x+5=7x-37 |

Equations solver categories