(-1)=-x(-x)+7x-3

Simple and best practice solution for (-1)=-x(-x)+7x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-1)=-x(-x)+7x-3 equation:



(-1)=-x(-x)+7x-3
We move all terms to the left:
(-1)-(-x(-x)+7x-3)=0
We add all the numbers together, and all the variables
-(-x(-1x)+7x-3)+(-1)=0
We add all the numbers together, and all the variables
-(-x(-1x)+7x-3)-1=0
We calculate terms in parentheses: -(-x(-1x)+7x-3), so:
-x(-1x)+7x-3
We add all the numbers together, and all the variables
7x-x(-1x)-3
We multiply parentheses
1x^2+7x-3
We add all the numbers together, and all the variables
x^2+7x-3
Back to the equation:
-(x^2+7x-3)
We get rid of parentheses
-x^2-7x+3-1=0
We add all the numbers together, and all the variables
-1x^2-7x+2=0
a = -1; b = -7; c = +2;
Δ = b2-4ac
Δ = -72-4·(-1)·2
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{57}}{2*-1}=\frac{7-\sqrt{57}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{57}}{2*-1}=\frac{7+\sqrt{57}}{-2} $

See similar equations:

| 20x-11=5x-9 | | -3(3x+7)=-75 | | 5(1-7n)=110 | | 62,500=0.25y | | 77=z+7 | | (10x^-1)+X=11 | | 5x=75 | | -30=-2(x+8 | | 4x−19=7x+19 | | y+-93=6 | | 12m-4=4m+12 | | 4–2x=22 | | (x+25)=(9x+10 | | -32=-4x-2x | | 2(4x-7)=42* | | y+59=98 | | -m=-16+3m | | .5x-2.25=3.6+4x | | 1.5x+5=2x-10 | | 6+4x-3=10 | | -3(-4+7b)=-b+32 | | 2+q=6-2q | | 3x–5=12 | | 14x+5(6.5)=10.25 | | 3w-39=-9(w+3) | | 0.10x=12+0.02x | | -7(5x+8)=-4(-6X-7 | | 2x-12+6x=68 | | -6(x-4)+5=4(x+1) | | 8x28-2x=-10 | | 35+x=72 | | 2+3/4k=7/20 |

Equations solver categories