((x)(3.6-x))/((2.8-x)(0.4-x)=3.84

Simple and best practice solution for ((x)(3.6-x))/((2.8-x)(0.4-x)=3.84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((x)(3.6-x))/((2.8-x)(0.4-x)=3.84 equation:



((x)(3.6-x))/((2.8-x)(0.4-x)=3.84
We move all terms to the left:
((x)(3.6-x))/((2.8-x)(0.4-x)-(3.84)=0
Domain of the equation: ((2.8-x)(0.4-x)-(3.84)!=0
x∈R
We add all the numbers together, and all the variables
(x(-1x+3.6))/((-1x+2.8)(-1x+0.4)-(3.84)=0
We multiply parentheses ..
(x(-1x+3.6))/((+x^2-0.4x-2.8x+1.12)-(3.84)=0
We multiply all the terms by the denominator
(x(-1x+3.6))=0
We calculate terms in parentheses: +(x(-1x+3.6)), so:
x(-1x+3.6)
We multiply parentheses
-1x^2+3.6x
Back to the equation:
+(-1x^2+3.6x)
We get rid of parentheses
-1x^2+3.6x=0
a = -1; b = 3.6; c = 0;
Δ = b2-4ac
Δ = 3.62-4·(-1)·0
Δ = 12.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3.6)-\sqrt{12.96}}{2*-1}=\frac{-3.6-\sqrt{12.96}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3.6)+\sqrt{12.96}}{2*-1}=\frac{-3.6+\sqrt{12.96}}{-2} $

See similar equations:

| (2.8-x)(0.4-x)=0 | | |x^2-3x-7|=3 | | (6x+1)/14=11/4 | | 20+4x-8x=4x | | 11=-16x^2+32x+3 | | 3x+4x-24=15-6x | | c+4=2c | | 5k^2-6=k | | (321-2x)x=321x-2x^2 | | =240x-2x^2 | | 9/4y−12=1/4y​-4 | | 84=x*0.5*15 | | 4=3x+72=46 | | 14x-5=5x-8 | | 3x-34(8+3)=13-6x | | 19=x+1.1(18-x) | | 19=x+1.1(18-x | | 22=12n | | 28=2(3.14)r | | -a+20=18 | | 40x+500=240x-3x^2 | | y’’-6y’+8y=0 | | 43x=340 | | -23+y=y+-23 | | 26=18m | | 3h+4h=28 | | 12x8+6x=8-14x | | 3/14=4/7x | | 6x+184=8x+207 | | 6p/3=0 | | 1/x+5=2/x^2-25 | | 4+1(x)=10(2x) |

Equations solver categories