((n)(n-1)=72)

Simple and best practice solution for ((n)(n-1)=72) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((n)(n-1)=72) equation:



((n)(n-1)=72)
We move all terms to the left:
((n)(n-1)-(72))=0
We calculate terms in parentheses: +(n(n-1)-72), so:
n(n-1)-72
We multiply parentheses
n^2-1n-72
Back to the equation:
+(n^2-1n-72)
We get rid of parentheses
n^2-1n-72=0
a = 1; b = -1; c = -72;
Δ = b2-4ac
Δ = -12-4·1·(-72)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-17}{2*1}=\frac{-16}{2} =-8 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+17}{2*1}=\frac{18}{2} =9 $

See similar equations:

| (6+8)•x=2x+12 | | 6x(x-2)=2(2x-9) | | d=3√284 | | 5+2x+10=10-(4-5x) | | 7=m-29 | | 104x+1+74x+1=180 | | 6(z-5)-2(3-z)=12 | | 21=s;4 | | 4(x−3)+7−10x=5 | | 8m^2-3m=0 | | 5f+5f=16+5f | | 6x²+12x-48=0 | | -9x+3(2x-1)+14=-2(4x-5)-4 | | |8k−5|=−4 | | |-5a|+7=22 | | 5a+4=(4a+2)+3 | | P+6=14±5p | | n²-3n-6n=0 | | 6(m+3)=2(m=5) | | 1/2(10x+5)-1.5=2x+6+3x | | -2(x+2)=-58 | | 7y+2=5y-20 | | 8=2/3n+4 | | 15x+5+6x+6=180 | | 125+12m=725 | | -(+10.5x)*2)*)-(1.5x-6(x=0 | | -3.1x+7-7.4x=1.5x-6(x-3/2)* | | 125m-12=725 | | 4m+12=4(2m+6) | | 5x+52+2x+1=180 | | 12=2v+14 | | 17x+38+25-x+21=180 |

Equations solver categories