((7/8)c+7)=c

Simple and best practice solution for ((7/8)c+7)=c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((7/8)c+7)=c equation:



((7/8)c+7)=c
We move all terms to the left:
((7/8)c+7)-(c)=0
Domain of the equation: 8)c+7)!=0
c!=0/1
c!=0
c∈R
We add all the numbers together, and all the variables
((+7/8)c+7)-c=0
We add all the numbers together, and all the variables
-1c+((+7/8)c+7)=0
We multiply all the terms by the denominator
-1c*8)c+7)+((+7=0
Wy multiply elements
-8c^2+7=0
a = -8; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-8)·7
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*-8}=\frac{0-4\sqrt{14}}{-16} =-\frac{4\sqrt{14}}{-16} =-\frac{\sqrt{14}}{-4} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*-8}=\frac{0+4\sqrt{14}}{-16} =\frac{4\sqrt{14}}{-16} =\frac{\sqrt{14}}{-4} $

See similar equations:

| 2(4)+16=x | | 3u+38=8u-2 | | 2(-14)+16=x | | 5(4g-16)=32 | | 19=47-4f | | (x+3)^2+17(x+3)+72=0 | | 3^x+2*2^x=0 | | −4x+11=27 | | x(x+2)/2=10 | | 2(6)+14=x | | x(x+2)/2=20 | | x+(x(.05))=9000 | | 2(-16)+14=x | | 8n-4=5n+4 | | 10(t)=40t-5t^2 | | 9x^+30x+25=0 | | -8(7b-2)=24-4b | | 16/(q+1)=4 | | (s-7)/3=2 | | 5(-2.4+1.6x)=8x+26 | | 68°y°=112 | | 2x+14*x+3=0 | | 9(x+2)=-15 | | -8h-5+7h=25 | | 54+3x=14 | | 3(-1)+y=-8 | | 2(6+2x)=2(2+3x) | | 5(x-13)=28 | | 3(-2)+y=-8 | | 3(-3)+y=-8 | | 3(-4)+y=-8 | | 10r^2-23r-42=0 |

Equations solver categories