If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((7(x*x))+3x)/(5x+9)=12
We move all terms to the left:
((7(x*x))+3x)/(5x+9)-(12)=0
Domain of the equation: (5x+9)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
5x!=-9
x!=-9/5
x!=-1+4/5
x∈R
((7(+x*x))+3x)/(5x+9)-12=0
We multiply all the terms by the denominator
((7(+x*x))+3x)-12*(5x+9)=0
We calculate terms in parentheses: +((7(+x*x))+3x), so:We multiply parentheses
(7(+x*x))+3x
We add all the numbers together, and all the variables
3x+(7(+x*x))
We calculate terms in parentheses: +(7(+x*x)), so:determiningTheFunctionDomain 7x^2+3x
7(+x*x)
We multiply parentheses
7x^2
Back to the equation:
+(7x^2)
Back to the equation:
+(7x^2+3x)
(7x^2+3x)-60x-108=0
We get rid of parentheses
7x^2+3x-60x-108=0
We add all the numbers together, and all the variables
7x^2-57x-108=0
a = 7; b = -57; c = -108;
Δ = b2-4ac
Δ = -572-4·7·(-108)
Δ = 6273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6273}=\sqrt{9*697}=\sqrt{9}*\sqrt{697}=3\sqrt{697}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-57)-3\sqrt{697}}{2*7}=\frac{57-3\sqrt{697}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-57)+3\sqrt{697}}{2*7}=\frac{57+3\sqrt{697}}{14} $
| 6x+4=1x-6 | | 6-13x=24=10(2x+8)+62+7x | | 3x(2+3)=x | | 1/2x+3=2/6-6x | | y+2+8=38 | | (z+2)(2-1=0) | | 15x+3=17x-4 | | 1x+1=7x-5 | | 20=5x-13=6x | | -a/4=-10 | | 2x2+28x+96=0 | | 18=5x+23 | | -31.75=y+14.6 | | -1.05(5-2d)=5 | | 7v+16=2(v-7) | | 3(v+7)=9v-27 | | 8x+5+35+5+16x=180 | | -5y-2=-8(y+4) | | 11=11a+22 | | 5(7)-(-30)=x | | .75x=5.4 | | 2a^2+20a=-54 | | 4=2/3x+8 | | 301.00+0.15m=160m | | (X^2+5x)=(4x)+110 | | 7n-6.2=-32.5 | | 2(25-4x)=(38-4x) | | 24=2a-6 | | f-23.99=18.79 | | -44-10x=-10x+16 | | z/3+3=17 | | 68=-4(x+1) |