((7)/(2)t)-2=4+7t

Simple and best practice solution for ((7)/(2)t)-2=4+7t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((7)/(2)t)-2=4+7t equation:



((7)/(2)t)-2=4+7t
We move all terms to the left:
((7)/(2)t)-2-(4+7t)=0
Domain of the equation: 2t)!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+7/2t)-(7t+4)-2=0
We get rid of parentheses
7/2t-7t-4-2=0
We multiply all the terms by the denominator
-7t*2t-4*2t-2*2t+7=0
Wy multiply elements
-14t^2-8t-4t+7=0
We add all the numbers together, and all the variables
-14t^2-12t+7=0
a = -14; b = -12; c = +7;
Δ = b2-4ac
Δ = -122-4·(-14)·7
Δ = 536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{536}=\sqrt{4*134}=\sqrt{4}*\sqrt{134}=2\sqrt{134}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{134}}{2*-14}=\frac{12-2\sqrt{134}}{-28} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{134}}{2*-14}=\frac{12+2\sqrt{134}}{-28} $

See similar equations:

| x/4-6=-12 | | n+24=-7 | | 2.5=3d | | X-7=5-2(x-3) | | n-18=65 | | 110-3x=30 | | 3x-5(x-5)=-2+4x-21 | | n+20=66 | | 2(2x-1)=10+4x | | 10-5+7x=15-2x+4 | | x/6=2/8 | | m-25.4=150 | | -15-x=-36 | | w/5+-38=-41 | | 1/3+5y=2/5 | | -3x+4+16=6-5x | | x9=5x9 | | 0.5(4x+12)=23 | | 2/3+30x=26 | | 1/2(4x+12)=23 | | 85/100=57/x | | 2/3(3x-5=3 | | 5x+25x-10=6(5x+10) | | b-6/4=b-8/3 | | 3x+9x-8=3(4x+2) | | 35/x+9=7/4 | | 2/3x+3=25 | | 10x+9-6x=—19 | | x=60x15 | | 5(x-6)=8=7x-10 | | 4=20x=9x=26 | | x=60.15 |

Equations solver categories