If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((4(x*x))+34x+43)/(x+7)=0
Domain of the equation: (x+7)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x!=-7
x∈R
((4(+x*x))+34x+43)/(x+7)=0
We multiply all the terms by the denominator
((4(+x*x))+34x+43)=0
We calculate terms in parentheses: +((4(+x*x))+34x+43), so:We get rid of parentheses
(4(+x*x))+34x+43
We add all the numbers together, and all the variables
34x+(4(+x*x))+43
We calculate terms in parentheses: +(4(+x*x)), so:determiningTheFunctionDomain 4x^2+34x+43
4(+x*x)
We multiply parentheses
4x^2
Back to the equation:
+(4x^2)
Back to the equation:
+(4x^2+34x+43)
4x^2+34x+43=0
a = 4; b = 34; c = +43;
Δ = b2-4ac
Δ = 342-4·4·43
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-6\sqrt{13}}{2*4}=\frac{-34-6\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+6\sqrt{13}}{2*4}=\frac{-34+6\sqrt{13}}{8} $
| (10x+58)=(6x+41) | | 2(4x+5)=3 | | -10(10x+5)-(-3+7x)=47 | | H²-27h+50=0 | | 6=4xR | | 3/5d-2=4 | | z-17.2=12.74 | | (4x^2+34x+44)/(x+7)=0 | | 4x+26x-9=6(5x+4) | | (X2-9)(x2-100)=0 | | 6/8d=3/8 | | (86+93+x)/3=90 | | 550-2x=16800/x+150 | | x4-5x3+9x2+x-14=0 | | 2x+4-3x+9=16 | | x+4x+2x=180 | | 2x−3=15 | | -4x^2-9600+400x=0 | | 36=3x+11+5 | | 18x+42=25x+28 | | -5(4x-9)+3(5x+6)=0 | | 2(-4x+8)=1/3(18x-33)+3 | | .6666(k-8)=52 | | 7x-3=41 | | (x+2)²-1=-1 | | 3-x/2=15 | | 4x-1=-14+8x | | x²-2x+7=0 | | x/6x+9=9 | | -4(-x-2)=4x+24 | | 1/2(8x-8)=4x+8 | | -5p+-10=5p-30 |