((36)/(9))=(1)/(3)m(2)-10

Simple and best practice solution for ((36)/(9))=(1)/(3)m(2)-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((36)/(9))=(1)/(3)m(2)-10 equation:



((36)/(9))=(1)/(3)m(2)-10
We move all terms to the left:
((36)/(9))-((1)/(3)m(2)-10)=0
Domain of the equation: 3m2-10)!=0
m∈R
We add all the numbers together, and all the variables
-(1/3m2-10)+4=0
We get rid of parentheses
-1/3m2+10+4=0
We multiply all the terms by the denominator
10*3m2+4*3m2-1=0
Wy multiply elements
30m^2+12m^2-1=0
We add all the numbers together, and all the variables
42m^2-1=0
a = 42; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·42·(-1)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*42}=\frac{0-2\sqrt{42}}{84} =-\frac{2\sqrt{42}}{84} =-\frac{\sqrt{42}}{42} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*42}=\frac{0+2\sqrt{42}}{84} =\frac{2\sqrt{42}}{84} =\frac{\sqrt{42}}{42} $

See similar equations:

| 9+3n=-17 | | 49=8t-23t= | | 4/x+64=58 | | x/4+64=58 | | k−538=215 | | 9^2-3^2=x^2 | | -5(y+3)-3(y-2)=-33 | | 3q-103=71 | | -28y=10.3 | | 2x2−5=43 | | 915+35x=1500 | | 2x^2−5=43 | | 7/x+2=1/x+2 | | 3w=123 | | 3^2+x^2=9^2 | | -(x+4)=-15 | | 54+90+6x=180 | | 3(y-5)=90 | | 688=2d | | C=3.14x5 | | 9(2x-3)=6 | | 110+25+2x-1=180 | | –6=–4+2r | | |2w|+6=3w-1 | | –10+4m=–6 | | X/5(x+3)=4(x-3) | | 27f=648 | | 65/15=169/x | | 270=5u | | 25u=225 | | 90+6x-3+9x-12=180 | | x+112=134 |

Equations solver categories