((3)/(4x-8))+((x)/(5))=2

Simple and best practice solution for ((3)/(4x-8))+((x)/(5))=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((3)/(4x-8))+((x)/(5))=2 equation:



((3)/(4x-8))+((x)/(5))=2
We move all terms to the left:
((3)/(4x-8))+((x)/(5))-(2)=0
Domain of the equation: (4x-8))!=0
x∈R
We add all the numbers together, and all the variables
(3/(4x-8))+(+x/5)-2=0
We get rid of parentheses
(3/(4x-8))+x/5-2=0
We calculate fractions
(-4x^2)/20x+()/20x-2=0
We multiply all the terms by the denominator
(-4x^2)-2*20x+()=0
We add all the numbers together, and all the variables
(-4x^2)-2*20x=0
Wy multiply elements
(-4x^2)-40x=0
We get rid of parentheses
-4x^2-40x=0
a = -4; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·(-4)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1600}=40$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*-4}=\frac{0}{-8} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*-4}=\frac{80}{-8} =-10 $

See similar equations:

| 5y-6y=22 | | 450=(2x+25)+3x | | -9z-10+z=-4z+10 | | 13=4(w+10)-w | | (3)/(4x-8)+(x)/(5)=2 | | 9+3r=4+2r | | 9x-6x+168=9x+96 | | 3k^2-6=129 | | x-16=47x | | 3+4h=13 | | 2x-3(-3x+16)=-4 | | 2(x+5)+8=27-x | | 3(y-4)=14 | | (70-x)-x=x-((70-x)/2) | | 15.07+0.09h=15.57+0.16h | | 70-x-x=x-((70-x)/2) | | 5/2x-1-2/2x+1=2 | | 4x+8-x=x+6 | | 3n^2+.75=90 | | 5=2w-3 | | 6-3t=0 | | 2+5n=n+3 | | 5/3x+1/3x=44/3+8/3x | | 6=2h-2 | | 6=9+u | | 9=2g+5 | | 5x+4x-48=64-7x | | 7x+4(6-x)=-5(x+3)-5x | | 20r–15r=20 | | 8-4x+9+7x-4-5x=-x | | -5.6(x-3.25)=16.8 | | 6x+4=2x12 |

Equations solver categories