((2x)/(x-4))+((9)/(x+9))=0

Simple and best practice solution for ((2x)/(x-4))+((9)/(x+9))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((2x)/(x-4))+((9)/(x+9))=0 equation:



((2x)/(x-4))+((9)/(x+9))=0
Domain of the equation: (x-4))!=0
x∈R
Domain of the equation: (x+9))!=0
x∈R
We calculate fractions
(2x^2+18x)/((x-4))*x+(9x-36)/((x-4))*x=0
We multiply all the terms by the denominator
(2x^2+18x)+(9x-36)=0
We get rid of parentheses
2x^2+18x+9x-36=0
We add all the numbers together, and all the variables
2x^2+27x-36=0
a = 2; b = 27; c = -36;
Δ = b2-4ac
Δ = 272-4·2·(-36)
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{113}}{2*2}=\frac{-27-3\sqrt{113}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{113}}{2*2}=\frac{-27+3\sqrt{113}}{4} $

See similar equations:

| 1/2*d=500 | | x/14=3,5 | | 0.15+x=1 | | x*x+14=96 | | 14x-x*x=96 | | 14x-x-x=96 | | 2900+40x=4500+25x | | -4x+10=-6x+11 | | 6^x=5^x+4 | | 7x=28.5 | | |x+4|=2x | | 10(x-9)=-113 | | 3(2x+1)=3(x-1)-(x-3) | | 2(x-2)=4-(x-2) | | 4x-5=42 | | 3x+66=-42-5x | | 3k-27-10k=16+11k=2 | | 2(4-5x-6x)+5(4x+7)=27 | | )5x+7=8x-23 | | -2c+8+7c=13 | | 3x²-60x-10=0 | | (e+3)3=18 | | 2x-67+x-17+3x=30 | | 38-10t=10+4t | | 3(x=2)=4(2x=1)=6x=20 | | 7x-11=10x+5 | | 3x-5=x/1 | | 4=-2r/20 | | q/4+2=9 | | 3y+4y^2=0 | | f/9-9=8 | | 3-(x+7)=3(2x)+1 |

Equations solver categories