2(x+3/2x-1)=3(x^2-1)

Simple and best practice solution for 2(x+3/2x-1)=3(x^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+3/2x-1)=3(x^2-1) equation:



2(x+3/2x-1)=3(x^2-1)
We move all terms to the left:
2(x+3/2x-1)-(3(x^2-1))=0
Domain of the equation: 2x-1)!=0
x∈R
We multiply parentheses
2x+6x-(3(x^2-1))-2=0
We calculate terms in parentheses: -(3(x^2-1)), so:
3(x^2-1)
We multiply parentheses
3x^2-3
Back to the equation:
-(3x^2-3)
We add all the numbers together, and all the variables
8x-(3x^2-3)-2=0
We get rid of parentheses
-3x^2+8x+3-2=0
We add all the numbers together, and all the variables
-3x^2+8x+1=0
a = -3; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·(-3)·1
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{19}}{2*-3}=\frac{-8-2\sqrt{19}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{19}}{2*-3}=\frac{-8+2\sqrt{19}}{-6} $

See similar equations:

| 2x^2+29x-6.5=0 | | ((11(x-2)/(x-3))+(5/x)=((-5/(x(x-3))) | | 18x=9=(-14) | | 20-4s=9s | | 1/4b+10=2 | | 3÷(q+1)=-3 | | 3x+5x+23=4(x+3x+2x+7) | | 4y-5y+3=-18 | | 4/3x-2=5-2x | | 3(x-1)=2(2x+8) | | 7x-2=2x+14 | | 84(5)=12x | | 68=20x+50+2 | | 4y-5y+3=18 | | N/7-5n/7=1/7 | | y+2/4=y+3/8 | | -7n+14=-6n-1 | | 13=y/5-14 | | -2x-(-3x-7)=19 | | 2(2n+2)=8(6n+1)+1 | | X+3+4x=48 | | 4x-100=5x+10 | | 15r-3=9r+6 | | 3=11+c÷6 | | 35=2b+2b+56 | | 9(8+u)=81 | | 2(5-2h)+9=-30 | | 2(5-2h)=9=-30 | | 13-5y=58 | | 2-8(-4+3z)=34 | | X+3+4(x-5)=48 | | 3x-1)(2x+5)=0 |

Equations solver categories