If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-25y-10=0
a = 15; b = -25; c = -10;
Δ = b2-4ac
Δ = -252-4·15·(-10)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-35}{2*15}=\frac{-10}{30} =-1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+35}{2*15}=\frac{60}{30} =2 $
| 3x+5=x+18 | | 12=10^x | | -6x+1=7x+2 | | 32=96/x | | x^2+2-31=0 | | (m/20)=5 | | -132=-4(5x-2) | | 2^(x+2)+2^(x-1)=0 | | 10^(-3x)(•10)^x=1/10 | | (100/m)=5 | | (2x8+28)∘=(6x+4) | | (m-5)=-12 | | 50-3/m=14 | | 4•(m-5)=-12 | | (2x+28)∘=(6x+4) | | 3m²+8m=–10 | | x/10=180 | | 3x^2+8x2=0 | | x-(15/100)x=100 | | 100x-21=0 | | 180=40+3x+2x | | x^2-×=42 | | 7+x/8=3 | | 0=x²-2x | | (B+3)(b)=0 | | X-0.12x=220 | | 3(4r+7)=105 | | 7^x+2=0 | | 4x2-20x+25=49 | | K+1=-2k+10 | | 10=10/3x | | 5d+2d=35 |