If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x in (-oo:+oo)
x^2*y*((10*x^4*y^3-(25*x^2*y^4)+5*x^3*y^2)/(-5)) = 0
x^2*y*((10*x^4*y^3-25*x^2*y^4+5*x^3*y^2)/(-5)) = 0
(x^2*y*(10*x^4*y^3-25*x^2*y^4+5*x^3*y^2))/(-5) = 0
( 10*x^4*y^3-25*x^2*y^4+5*x^3*y^2 )
10*x^4*y^3-25*x^2*y^4+5*x^3*y^2 = 0
5*x^2*y^2*(x-5*y^2+2*x^2*y) = 0
x+2*x^2*y-5*y^2 = 0
DELTA = 1^2-(-5*2*4*y*y^2)
DELTA = 40*y^3+1
40*y^3+1 = 0
40*y^3 = -1 // : 40
y^3 = -1/40
y^3 = -1/40 // ^ 1/3
y = -(1/40)^(1/3)
DELTA = 0 <=> t_2 = -(1/40)^(1/3)
x = -1/(2*2*y) i y = -(1/40)^(1/3)
x = -1/(4*y) i y = -(1/40)^(1/3)
( x = ((40*y^3+1)^(1/2)-1)/(2*2*y) or x = (-(40*y^3+1)^(1/2)-1)/(2*2*y) ) i y > -(1/40)^(1/3)
( x = ((40*y^3+1)^(1/2)-1)/(4*y) or x = (-1/4)*y^-1*((40*y^3+1)^(1/2)+1) ) i y > -(1/40)^(1/3)
y+(1/40)^(1/3) > 0
y+(1/40)^(1/3) > 0 // - (1/40)^(1/3)
y > -(1/40)^(1/3)
5*x^2*y^2 = 0
5*x^2*y^2 = 0 // : 5*y^2
x^2 = 0
x = 0
( x^2*y )
x^2*y = 0 // : y
x^2 = 0
x = 0
x in { -1/(4*y), ((40*y^3+1)^(1/2)-1)/(4*y), (-1/4)*y^-1*((40*y^3+1)^(1/2)+1), 0, 0 }
| 3(2x+7)-2(12-3x)=21 | | (1443/4)-(1443/8) | | 5(3+y)=4(y-5) | | 8k-2k=12 | | t(t-4)=21 | | 3a^2-8a-4=0 | | 1/8+5/12 | | 3/5+2/15 | | 2/5x3/10 | | 3(x-1)-(4x-7)=4(5x-1)-13 | | 4(5-3m)9=3m-9 | | .02y-.16y=.7 | | 3x-3-4x+7=20x-4-13 | | -15/50x=2 | | 2x-8x=-11+29 | | x-(x*.03)=369206 | | 576=720 | | -10x+x=27 | | 2/3y=10/9 | | 2/5x-3/10x2 | | 0.3x=-15 | | -28+x=x+17 | | x^2-8x+12=-4 | | 13=-5+p/3 | | 7x3/9 | | c^2+3c+1=0 | | 4(5e-8)=-12 | | 1/6+3/8 | | 5+11p-4=8p+46-6p | | 0.003+3.08/0.01 | | x^2+2xy+y^2=4xy | | 2-(5/x)=(10/x)+1 |