If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+44X-45=0
a = 1; b = 44; c = -45;
Δ = b2-4ac
Δ = 442-4·1·(-45)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-46}{2*1}=\frac{-90}{2} =-45 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+46}{2*1}=\frac{2}{2} =1 $
| F(x)=5x-21 | | 3x(2)-147=0 | | 4(7x+8)=192 | | x^2=53.29. | | 9x-7=173 | | v/5-13=18 | | 18=v/5-13 | | X-10+x+32+x+14=180 | | (q-8)×2=4 | | –8+–3h=–32 | | 10x-7=77 | | 5x-7+3x+22=127 | | (-23/24)(8)=x | | 4x+1+3x-8=105 | | 20/30=60/n | | 2z=3.8 | | Y=150000+0.1x | | 60-2x=8x | | x/12=68/14 | | 3(3x-3)-(x-5)=28 | | 4(a-2)+a=1a-0 | | 4(a-2)+a=0a-3 | | 15=u-9 | | 6x-30-2.50=40 | | 6x-30-2.50=40 | | 6x-30-2.50=40 | | 4(a-2)+a=8a-3 | | 8(e-5)=2)3e-8) | | 4(a-2)+a=3a-2 | | (x)=(x-16) | | 10x+7=39 | | 17d+12=18d |