If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x^2=35.
We move all terms to the left:
3x^2+4x^2-(35.)=0
We add all the numbers together, and all the variables
3x^2+4x^2-35=0
We add all the numbers together, and all the variables
7x^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| 0.4+x/(0.3-x)(0.2-x)=20 | | x^3+9x^2+27x-(x-1)^1/3+31=0 | | 7.7x8=x | | x=12.89-8(9-x) | | 1.4(2h+30=0.9(3h-2) | | 4(3-3b)=-84 | | (36)y=14.76 | | 50x+570=10x+850 | | 36x2=216^(x+3) | | 20(x-13)=220 | | 12^3+8^2-27x-18=0 | | 12x3+8x2-27x-18=0 | | x+0.2*x=323 | | x+0.2*x=258 | | x+0.2*x=227 | | z/24=5 | | 8x2+11=9x | | 12x2=-3+8x | | 8n2-8n=-5 | | a2+18a-66=-3 | | x2+16x-51=6 | | x2+16x-51=5 | | 81k2-3=1 | | 2n2+5=121 | | 7x2+140=63x | | v2+6v=16 | | d.88=88.000 | | 10x-23=100 | | 10x-23=50 | | -12*c=12 | | y=70+14(70 | | 16-v=157 |