2/5x+4=2.5x-12

Simple and best practice solution for 2/5x+4=2.5x-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+4=2.5x-12 equation:



2/5x+4=2.5x-12
We move all terms to the left:
2/5x+4-(2.5x-12)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
2/5x-2.5x+12+4=0
We multiply all the terms by the denominator
-(2.5x)*5x+12*5x+4*5x+2=0
We add all the numbers together, and all the variables
-(+2.5x)*5x+12*5x+4*5x+2=0
We multiply parentheses
-10x^2+12*5x+4*5x+2=0
Wy multiply elements
-10x^2+60x+20x+2=0
We add all the numbers together, and all the variables
-10x^2+80x+2=0
a = -10; b = 80; c = +2;
Δ = b2-4ac
Δ = 802-4·(-10)·2
Δ = 6480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6480}=\sqrt{1296*5}=\sqrt{1296}*\sqrt{5}=36\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-36\sqrt{5}}{2*-10}=\frac{-80-36\sqrt{5}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+36\sqrt{5}}{2*-10}=\frac{-80+36\sqrt{5}}{-20} $

See similar equations:

| 9x^2+42x+28=0 | | 5x^2-x=-120 | | 5x^2-x+120=0 | | -5.9x-4+2.3x-6=9.8 | | v/17=15 | | 26=-13b | | x*1.5x=4791.6 | | 8x+3=9x+8 | | 44-3x=20 | | 2.5j+-18=0 | | -(75/6+j)=5.5 | | -12g+171/2=-8.5 | | 4(g+24)=26 | | x-10=-37 | | x+33=-14 | | 2/7y+5=12 | | n2+4n=45 | | 5-(x+10)=-4-3x | | 3(e+6)=27 | | 42-7x-13=133-20 | | 30=4x+ | | -9(-3x-1)-3x-1=-39 | | -3(4-2x+8)=-72 | | 3(-5x+9)=-108 | | 3(3x-10)=7x-48 | | (20x-19)^2=121 | | (3x-4)-5=17 | | 1/2(1p+5)=7.5 | | -3(5-1w)=18 | | 9x+3=-45x+15 | | -2x+3-3x=32 | | -6x-3+8x=-7 |

Equations solver categories