If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10m^2-45m+45=0
a = 10; b = -45; c = +45;
Δ = b2-4ac
Δ = -452-4·10·45
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-15}{2*10}=\frac{30}{20} =1+1/2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+15}{2*10}=\frac{60}{20} =3 $
| 11x+-29=180 | | -20x+40=2(14-6x)+5x | | 4(-2)2+8(-2)+3(-2)+6=x | | 0.05n+0.15=0.4 | | (m/4)+3=-1 | | 5.5(6-x)+27=100-2.5(3x+20) | | 10x-17=700 | | 50/25x=20 | | 5x=143 | | -2(w+5)=-7w-40 | | 9y+15=-4(y+6) | | 9x+13=144 | | 121=-y+282 | | 244=-v+169 | | 151-v=246 | | -3(y+1)+7=4(y+1)=-7 | | 6=a- | | 452.16=4(3.14r)^2 | | 30-0.80x=14-1.20x | | -6(3x-1)+3x=3(x+6) | | 6+2(2w-4)=-2(5w-7)+2w | | 6+2(1w-4)=-2(5w-7)+2w | | 5(w-3)=-4w-24 | | 5(w-3)=4w-24 | | (5x-6)=(7x+12)=180 | | s-2=-3s+14 | | 4x-(2x-3)=5(1+2x) | | -4(2x+1)+4x+3=-17 | | 4(x+1)-3x-3=8 | | -5(-2x-5)-2x-2=15 | | -5(-5x+2)+3x+5=23 | | -2(x-13)=-6 |