If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Simplifying 3x + 9 = 23 Reorder the terms: 9 + 3x = 23 Solving 9 + 3x = 23 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-9' to each side of the equation. 9 + -9 + 3x = 23 + -9 Combine like terms: 9 + -9 = 0 0 + 3x = 23 + -9 3x = 23 + -9 Combine like terms: 23 + -9 = 14 3x = 14 Divide each side by '3'. x = 4.666666667 Simplifying x = 4.666666667

| 16=6x-3x+4+x | | 5x+1-2x=4x-2 | | 9-7x=21-14x | | 9-7x=21-14 | | 4x^2-9x+4=0 | | 6x(3x-1)=8-(10x-14) | | 3x+5=-86-10x | | -5(x+1)+4(2x-3)=2(x+2)-8 | | 7+6x=37+x | | 12x-4-(8x+3)+(7x-2)=68 | | 6y=36 | | 4p-11-p=2+2p-20 | | d+7=-12 | | 3n+2n=7+4n | | 2g-6=8 | | 10(x+2)=4(x+8) | | 2(x+3)-5x+1=16 | | 7x-2=8x-2 | | 4(2+x)+1=7x-3(x-2) | | -13=y+64 | | 8+3(5+(-x))=14 | | -8=27+5x | | X^5-x^4+2x^3-4x^2-8x=0 | | 15x+7-3x-8=83 | | 2x^2-6x+17=0 | | -(4a-7)-5a=10+a | | (4-3)+(4+5)= | | x^2=17x | | (-14+-1x)(12+-1x)=0 | | 3+2x(1+4)= | | 3x-2=44+5 | | (5-3)+(4+5)= | | 2x-7+117=180 | | 15x-5=90-4x | | 6x-5=3x+1 | | x^2+2x-168=0 | | r=4.4+3.9 | | x^5-8x^3+16x=0 | | 8k+4=2k-3 | | 4p-3=8p+5 | | s-5=6+(-8) | | 8m-4=3m+8 | | Y=2x^2+3x-5 | | 4x-2=6x+3 | | 12+(-g)=10 | | 2x+3=3x+5 | | 8x+4=6x-1 | | -13+x=18 | | 0.001x+0.09=1.1 | | 1.3x-0.32=0.98 | | -13+x=9 | | 12-(-u)=17 | | 10q+(25*7)=195 | | 10q+(25+7)=195 | | 25-q=10 | | 25q+(10*7)=195 | | 25q+(10+7)=195 | | 11+x=3x | | 7x+9=5x+15 | | 10y=4y+2 | | 3.1w+5=.8+w | | 7a-13=3d+7 | | 2x-65=x | | 13y-18=-5y | | 32=-4n |

- Equations solver - equations involving one unknown
- Quadratic equations solver
- Percentage Calculator - Step by step
- Derivative calculator - step by step
- Graphs of functions
- Factorization
- Greatest Common Factor
- Least Common Multiple
- System of equations - step by step solver
- Fractions calculator - step by step
- Theory in mathematics
- Roman numerals conversion
- Tip calculator
- Numbers as decimals, fractions, percentages
- More or less than - questions